A conserved apicomplexan microneme protein contributes to Toxoplasma gondii invasion and virulence.
نویسندگان
چکیده
The obligate intracellular parasite Toxoplasma gondii critically relies on host cell invasion during infection. Proteins secreted from the apical micronemes are central components for host cell recognition, invasion, egress, and virulence. Although previous work established that the sporozoite protein with an altered thrombospondin repeat (SPATR) is a micronemal protein conserved in other apicomplexan parasites, including Plasmodium, Neospora, and Eimeria, no genetic evidence of its contribution to invasion has been reported. SPATR contains a predicted epidermal growth factor domain and two thrombospondin type 1 repeats, implying a role in host cell recognition. In this study, we assess the contribution of T. gondii SPATR (TgSPATR) to T. gondii invasion by genetically ablating it and restoring its expression by genetic complementation. Δspatr parasites were ~50% reduced in invasion compared to parental strains, a defect that was reversed in the complemented strain. In mouse virulence assays, Δspatr parasites were significantly attenuated, with ~20% of mice surviving infection. Given the conservation of this protein among the Apicomplexa, we assessed whether the Plasmodium falciparum SPATR ortholog (PfSPATR) could complement the absence of the TgSPATR. Although PfSPATR showed correct micronemal localization, it did not reverse the invasion deficiency of Δspatr parasites, because of an apparent failure in secretion. Overall, the results suggest that TgSPATR contributes to invasion and virulence, findings that have implications for the many genera and life stages of apicomplexans that express SPATR.
منابع مشابه
Apicomplexan rhomboids have a potential role in microneme protein cleavage during host cell invasion.
Apicomplexan parasites secrete transmembrane (TM) adhesive proteins as part of the process leading to host cell attachment and invasion. These microneme proteins are cleaved in their TM domains by an unidentified protease termed microneme protein protease 1 (MPP1). The cleavage site sequence (IA downward arrowGG), mapped in the Toxoplasma gondii microneme proteins TgMIC2 and TgMIC6, is conserve...
متن کاملIntramembrane cleavage of microneme proteins at the surface of the apicomplexan parasite Toxoplasma gondii.
Apicomplexan parasites actively secrete proteins at their apical pole as part of the host cell invasion process. The adhesive micronemal proteins are involved in the recognition of host cell receptors. Redistribution of these receptor-ligand complexes toward the posterior pole of the parasites is powered by the actomyosin system of the parasite and is presumed to drive parasite gliding motility...
متن کاملA conserved subtilisin-like protein TgSUB1 in microneme organelles of Toxoplasma gondii.
Proteolytic processing plays a significant role in the process of invasion by the obligate intracellular parasite Toxoplasma gondii. We have cloned a gene, TgSUB1, encoding for a subtilisin-type serine protease found in T. gondii tachyzoites. TgSUB1 protein is homologous to other Apicomplexan and bacterial subtilisins and is processed within the secretory pathway of the parasite. Initial cleava...
متن کاملRhoptry neck protein RON2 forms a complex with microneme protein AMA1 in Plasmodium falciparum merozoites.
Erythrocyte invasion is an essential step in the establishment of host infection by malaria parasites, and is a major target of intervention strategies that attempt to control the disease. Recent proteome analysis of the closely-related apicomplexan parasite, Toxoplasma gondii, revealed a panel of novel proteins (RONs) located at the neck portion of the rhoptries. Three of these proteins, RON2,...
متن کاملAn Apicomplexan Actin-Binding Protein Serves as a Connector and Lipid Sensor to Coordinate Motility and Invasion.
Apicomplexa exhibit a unique form of substrate-dependent gliding motility central for host cell invasion and parasite dissemination. Gliding is powered by rearward translocation of apically secreted transmembrane adhesins via their interaction with the parasite actomyosin system. We report a conserved armadillo and pleckstrin homology (PH) domain-containing protein, termed glideosome-associated...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Infection and immunity
دوره 82 10 شماره
صفحات -
تاریخ انتشار 2014